INTERCHANGING: Future designs for responsive transport environments
INTER
CHANGING
Future designs for responsive transport environments
GARDNER HAEUSLER MAHAR
Contents

Foreword
Associate Professor Marcus Foth 8

Context
Introduction: responsive transport environments
Dr. M. Hank Haeusler 13

Interdisciplinary frameworks
Nicole Gardner & Briedy Mahar 19
VISION

Urban infostructures of possibility
Nicole Gardner

Reframing public transport: what is and what ifs?
Tim Tompson

Future transport services: challenges and opportunities
Tom Hordern

PARAMETERS

27 NSW long term transport master plan
Transport for New South Wales

33 The role of the City of Sydney in bus shelter provision
Bonnie Parfitt

39 Responsive passenger information systems: the next generation
Dr. Michelle Zeibots
STUDIO

NEXUS
Morgan Carson, Alexander Mendes
Annie Vu, Kevin Lao

GIVETAKEGIVE
Belinda Hoang, Lilia Lanegra,
Melody Willis

GROWTH
Evan Fan, Mani Hunjan,
Gene Jin

REFUEL
Estelle Rehayem, Xiaolu Li,
Clement Yoong

ACTIVE
Vivyan Wu, Nailah Masagos,
Alyanna Agda

SYSTEMS

66 Urban informatics in public transport environments
 Jimmy Ti

70 Sense and sensing in public transport environments
 Dr. Nathan Kirchner

74 The history and future of interaction design in public transport environments
 Dr. Martin Tomitsch

82
<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>SITUATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designing urban infrastructure</td>
<td>Interchange of the future</td>
</tr>
<tr>
<td>Professor Alec Tzannes</td>
<td>131</td>
</tr>
<tr>
<td>Designing public transport environments</td>
<td>Acknowledgments</td>
</tr>
<tr>
<td>Mark Gilder</td>
<td>137</td>
</tr>
<tr>
<td>Enabling new revenue models through media architecture</td>
<td>Encircle ARC linkage grant</td>
</tr>
<tr>
<td>Dr. M. Hank Haeusler</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>BEIL initiative</td>
</tr>
<tr>
<td></td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Author biographies</td>
</tr>
<tr>
<td></td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Students teams</td>
</tr>
<tr>
<td></td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Image credits</td>
</tr>
<tr>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Glossary of terms</td>
</tr>
<tr>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Imprint</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>
For example the Brisbane River is criss-crossed by ‘CityCats,’ the local river ferries. Tourists frequently hop onto a CityCat, not necessarily because they want to go from A to B, but because they enjoy the journey on a ferry, to take in the views, take photos, and enjoy the breeze. It is not uncommon that they return and disembark at the same stop from which they first departed. It is not getting to a destination, but the experience of the journey itself, that is their primary goal.

Digital information, ubiquitous computing, mobile devices, social media, and urban informatics offer new possibilities to bridge the digital and physical layers not just of cities, but of public transport as well – before, during, and after a journey (Foth & Schroeter, 2010). Location-based services not only allow passengers to access more accurate information from the transport provider, but also engage in a dialogue to report maintenance issues and provide feedback. This dialogue has also been extended to consider passenger-to-passenger communication and interaction. For example, the TrainYarn application was inspired by the popular ChatRoulette web service and allows commuters to anonymously chat with each other (Camacho et al., 2013b). The Cart-load-o-fun study by Toprak et al. (2013) re-conceptualises public transport vehicles as game spaces in order to bring about a more playful, enjoyable, and engaging passenger experience.

What does the future hold? In the short term, many interaction design applications seek to enhance and improve the experience of using public transport, so to make the journey a little bit more convenient, personal, and comfortable – just like being driven in your private vehicle. At the same time, single-occupant vehicles continue to contribute to major traffic congestions and parking problems in urban environments, and as a result, ride sharing and car pooling applications have been developed that make private transport a little bit more public (Brereton et al, 2009).
Perhaps we won’t see a convergence of public and private transport straight away, but this perfect storm has already given rise to emerging new forms of hybrid public/private transport. Similarly how apps such as Airbnb allow ordinary people to compete in the short-term letting market (Ikkala & Lampinen, 2014), smartphone apps such as Uber, GoCatch, and WunderCar introduce share economy principles to the public transport market by reducing the barrier between drivers and passengers, challenging existing pricing structures and business models, and designing new innovative value-add services. Following Gandhi’s famous quote, “first they ignore you, then they laugh at you, then they fight you, then you win,” it seems this trend has now (June 2014) advanced to the fighting stage as “angry cab drivers gridlock Europe in protest at ‘unregulated’ taxi app.”

People may still want to own personal vehicles for a while, but the advent of more sophisticated car-pooling and car sharing schemes, and ‘DIY public transport’ services such as Uber will increasingly make these alternatives more attractive. At the same time, as they compete with the conventional public transport space, they are blurring the boundaries between public and private transport. Once the proponents and engineers of autonomous cars hurry to sort out their ethical dilemmas and arrive at ready-to-market solutions, the driver may soon be obsolete, as the driver-less robot car picks you up when and where you need it and drops you off wherever you want. Running after the bus may soon be a relic of the past, as public transport will follow the people.

